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Supplementary Equations:

The control problem studied here is schematized in Supplementary Figure 1
and works as follows: the agent is presented with a visual target presented
on a fixed 2D plane. Given the perceived location of the target the agent
must then try to touch it. To keep the simulations simple, the attempt to
strike the target is open loop (i.e. the agent is not able to modify their choice
in mid-flight) and happens in a single time step or trial. Let, x(t) ∈ R2 and
xp(t) ∈ R2, be the real and perceived location of the target on trial t. Here
we will denote the elements of a vector using subscripts, e.g. x1(t) is the first
element of x at trial t, and for convenience we will often drop the trial index,
e.g. we may just write x or xp. The target is viewed through one of three
transformations, which are induced by prisms in the experimental setup,

1. No visual perturbation; the identity transformation:
xp = TI(x) = x
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perceived target

perceived touch

Figure 1: A schematic of the task and modelled controller. Each trial, the con-
troller gets a perceived target, xp, as input and computes a command, u, which
dictates the position on a screen that the arm will touch. The feedback error, e, as-
sociated with a trial is computed from the difference between the perceived target,
xp, and perceived touch location, up. Both the perceived target and touch loca-
tion are viewed normally during baseline and washout conditions, and by way of
reversing prism transformation, TR(·), or displacing prism transformation, TD(·),
during perturbed conditions. The controller is composed of a vector of local basis
functions, φ, and two sets of adjustable parameters, µ and w.

2. A horizontal displacing perturbation of magnitude D:
xp = TD(x) = [x1 +D,x2]

3. A horizontal reversing perturbation about 0:
xp = TR(x) = [(−1) · x1,x2]

Let, u(t) = u(xp(t)) ∈ R2, be the location in real world coordinates that the
agent touches and, up(t) = up(xp(t)) ∈ R2, be the perceived location of the
agent’s throw. The same transformation, TX(·), is applied to the real world
coordinates of the agent’s throw to get the perceived location of the touch:
up(xp(t)) = TX(u(xp(t))). If, as in the main text, we take the control law
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to be parameterized by the vector, α, then we can write the real world and
perceived touch locations as, u(xp(t);α), and, up(xp(t);α), respectively.

We define the error made on a given trial, t, to be the vector difference
between the perceived target and touched location, e(t) = up(t) − xp(t).
Now, we define the loss function to be minimized as, L = 1

2
||e||2.

Having defined the loss function we are interested in minimizing, here we
briefly demonstrate the effect of the various transformations on the partial
derivatives of the error, e, with respect to the commands, u. We start by
recalling the standard sensorimotor learning rule, which follows the gradient
of the loss function with respect to the control parameters, given by:

∂L

∂αn

= eT ∂e

∂u

∂u

∂αn

=
2∑
i=1

ei ·
2∑
j=1

∂ei
∂uj
· ∂uj
∂αn

(1)

where, αn, is the nth element of the parameter vector. Thus the standard
update rule is:

∆αn = −η ∂L
∂αn

= −ηeT ∂e

∂u

∂u

∂αn

(2)

where, η > 0, is a learning constant. Here we will examine the sensitivity
matrix, ∂e/∂u, under four visual perturbations. The first three are the ones
used in experiments, and the fourth illustrates how a compressing/expanding
prism would effect the sensitivity though no such prism was used.

1. Under the identity transformation, TI(·), we have: e = up − xp =
TI(u)− xp = u− xp. Thus the matrix of partial derivatives is:

∂e

∂u
=
∂u

∂u
− ∂xp

∂u
=

(
1 0
0 1

)
(3)

2. Under the displacing transformation, TD(·), we have: e = up − xp =
TD(u)−xp = u + [D, 0]−xp. Thus the matrix of partial derivatives is:

∂e

∂u
=

(
1 0
0 1

)
(4)

Notice that the displacing perturbation has no effect at all on the sensi-
tivity matrix, which means that the standard update rule will function
just as well as it did with no perturbation.
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3. Under the reversing transformation, TR(·), we have: e = up − xp =
TR(u)−xp = [(−1) ·u1,u2]−xp. Thus the matrix of partial derivatives
is:

∂e

∂u
=

(
−1 0
0 1

)
(5)

It is important to notice that the sensitivity matrix under the reversing
transformation, TR(·), has an element whose sign is opposite from the
normal conditions (i.e. under the identity transformation). In partic-
ular, the sign of ∂e1/∂u1 has changed from 1→ −1. This means that
the update rule given in equation 2 will be wrong under the reversing
condition if the old matrix ∂e/∂u associated with the identity condition
is used during learning.

4. Now, we consider a horizontal compressing/expanding transformation
of magnitude, C > 0, which acts like: xp = TC(x) = [C · x1,x2].
Under this transformation, we have: e = up − xp = TC(u) − xp =
[C · u1,u2]− xp. Thus the matrix of partial derivatives is:

∂e

∂u
=

(
C 0
0 1

)
(6)

Since, none of the signs of the sensitivity matrix are altered by com-
presion (0 < C < 1) nor expansion (1 < C), the standard learning rule
will continue to function. However, if the compression factor is very
small, or expansion factor very large, it is possible that the learning
rate, η > 0, may need to be adjusted for learning to procede nicely (i.e.
quickly, and without instability).

5. Finally, we consider a transformation which is a rotation by some angle,
θ, which acts like: xp = TRot(θ)(x) = Rot(θ) · [x1,x2]. Where,

Rot(θ) =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
(7)

Under this transformation, we have: e = up − xp = TRot(θ)(u) − xp =
[cos(θ)u1 − sin(θ)u2, sin(θ)u1 + cos(θ)u2] − xp. Thus the matrix of
partial derivatives is:

∂e

∂u
=

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
(8)
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Thus, the signs of the matrix elements are dependent on the rotation
angle, θ.

A Caveat: In the paper we said that a change in the sign of any of the el-
ements of the normal sensitivity matrix will doom learning. This is usually,
but not strictly true. It’s actually the vector of partial derivatives ∂L/∂u
which determines whether learning will work or not. One can construct spe-
cial conditions under which multiple sign changes in the sensitivity matrix
occur, but the vector of partials ∂L/∂u maintain the correct signs for learn-
ing. These are special cases and do not seem to have much bearing on most
sensorimotor problems though; see [1] for a more detailed account of this.

Simulation details: In our simulations, the parameterized controller was
a simple 1 hidden layer radial basis function network [8]. None of the ideas
central to this paper should change for any other reasonable choice of con-
troller. The network is schematized in Supplementary Figure 1. This type of
model, in which the basis functions, φ, are local, was selected because it is
widely assumed that visuomotor learning generalizes locally. The controller
has the following form:

u(xp) =

[
n∑
i=1

w1i · φi(x
p),

n∑
i=1

w2i · φi(x
p)

]
(9)

where, w ∈ R2×n, is a weight matrix and the basis functions are locally tuned
gaussians, φi(·), i ∈ {1, ..., n}, given by:

φi(x) = βi · e
−||x−µi||

2

2σ2
i (10)

where, β,σ ∈ R2, and, µ ∈ R2×n, are model parameters. In our simulations
the vector, σ, was hand tuned and fixed.

For convenience we can write the parameters flattened into a generic parame-
ter vector, α = {β,µ,w}. Then the update rule we used during simulations
is very similar to the standard rule given earlier; the only difference is the
inclusion of a momentum term to speed learning:

∆αn(t) = −η ∂L
∂αn

= −ηeT ∂e

∂u

∂u

∂αn

+ ρ [∆αn(t− 1)] (11)

where, ρ, is the momentum term which speeds up learning by incorporating
a weighted version of the previous trial’s update [6].
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Simulation overview: Two variants of the model performed essentially the
same task as human subjects in the random-target experiments. Each trial,
a target was chosen at random and the transformed version of this target
was given to the model variants as input. Each model variant computed a
command output which was transformed via the same perturbation after a
small amount of Gaussian noise (µ = 0, σ = 1) was added to the motor com-
mand. We performed n=15 runs of the simulation (the same as the number
of subjects who participated in the random-target experiment) with different
seeds for the random number generator. In a pre-experiment phase, both of
the model variants were trained to correctly map perceived targets to the
motor commands required to hit them without any visual transformation.
Since initially the state of the network was randomly initialized, it took ap-
proximately 5000 trials to converge to a robust controller for the identity
transformation. Once this phase was complete (i.e. performance is accept-
able), the model variants were programmed to perform the reversal task with
random targets.
For details about how the sensitivity is learned in the case of the implicit
supervision variant, please see [1].

Supplementary Discussion:

Comments on “explicit” strategies: To reiterate, a common approach in
sensory motor neuroscience is to attribute these sorts of unexplained results
(i.e. erratic learning with no aftereffect) to “cognitive” or “explicit” strategies
or “tricks”. But these words are too vague to provide a real theory. We
would do better to focus on the algorithmic properties we need to cover the
facts, namely that the mechanism invoked by reversals is erratic, apparently
lapsing or overcorrecting from one trial to the next, and it leaves no trace
when sensitivity derivatives are restored to normal.

One could easily devise a learning mechanism with these two properties,
but that approach would be ad hoc it could be done in many different
ways and would give us no idea why natural selection favored this type of
learning. A stronger theory would have to start from some algorithm that
had already been identified as useful, based on fundamental control issues,
and that showed the properties in question. There appear to be at least two
promising approaches. Koerding et al. have argued on Bayesian grounds that
learning should proceed on multiple timescales, some mechanisms learning
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quickly and forgetting quickly, others learning and forgetting slowly [5]. The
rationale is that some changes in the world are fleeting and others long-
lasting, and the brain should be able to cope with both. Our subjects lack
of aftereffect, and perhaps their erratic progress, may be explained by very
short-term learning. Another approach focuses on computational resources:
Fortney and Tweed [3] have shown that complex tasks can be learned quickly
and with few neurons by a mechanism called weightless learning, but the price
is that the process is sometimes erratic and has no memory.

Comments on aftereffects: Negative aftereffects are a robust phenomenon
that have been found in many conditions not only in the prism adaptation
literature, but in a variety of sensorimotor adaptation tasks across both kine-
matic and dynamic domains [11, 4]. Negative aftereffects are thought to be a
manifestation of the modification of an internal model in response to changes
either in the environment or to changes in the physical plant [10]. Afteref-
fects are evident once the normal (or previous) conditions are reestablished.
The absence of aftereffects has principally been observed in two experimental
conditions. The first is when the internal model is simply not updated; the
second is when the system learns to switch between two previously learned
internal models based on context. [7, 9, 10].

Here we found typical negative aftereffects [2] in the fixed target refract-
ing prism experiment; raw results can be seen in Supplementary Figure 2.
The negative aftereffect is readily apparent when compared to Figure 1c
of the main text where the absolute values of the error were plotted. The
most intriguing findings, however, were the results obtained in the reversing
prism experiments. The reversing prism group as a whole not only did not
show a negative aftereffect, but seem to have a large positive aftereffect that
disappears almost immediately followed by more subtle, but still positive,
aftereffects.

The reversal experiments where the target appeared in random positions
also shed light on the aftereffects results. Once the reversing prism was
withdrawn, the group showed a large aftereffect that did not returned to
baseline levels during the fifty last trials after the prism was withdrawn.
We think those aftereffects were in fact negative aftereffects derived from
the gradual maladaptive learning done while performing with the reversing
prisms (i.e. an after effect stemming from learning with the wrong sensitivity
estimate).
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Figure 2: Affereffects in the fixed target experiments. a, Mean error (note, that
this is not absolute error) made by subjects in the refracting prisms condition.
Notice that the aftereffect in the washout phase is negative. b, Mean error made
by subjects in the reversing prism condition. Notice that the aftereffect is small
and positive. c, Mean error for the 55 of 78 subjects who were able to improve
during the reversing prism condition (i.e. their mean absolute error during the
last 5 perturbed trials was less than 3.0 cm). Notice that in this case there is no
discernable afftereffect at all. d, Mean error for the 23 of 78 subjects who were
unable improve during the reversing prism condition. Notice that in this case there
is a easily seen positive aftereffect.
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Figure 3: Examples of individual subject performance in the fixed target / revers-
ing prism experiment. a-c, Three subjects who were unable to reduce the mean
absolute error across the last 5 perturbed trials to less than 3 cm. Notice that
these subjects show a tendency to correct in the wrong direction throughout the
25 perturbed trials. d-f, Shows the performance of three typical subjects who were
able to reduce the mean absolute error across the last 5 perturbed trials to < 3
cm. However, these subjects are very unstable around the target; i.e. they do not
exhibit the nice learning curves observed under the displacing prism condition.
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